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Brief Summary of Research Project 
 
The goal of this project is to design and implement efficient algorithms for the real-time 
compression of hyperspectral images. The uniqueness of this project is that the 
compression algorithms will be recursively optimized as a function of the performance of 
classification (or unsupervised clustering) algorithms on the same data. Certain 
performance metrics will be defined for the classification schemes and some others for 
the compression algorithms.  A combination of these metrics will be used to design a cost 
function, which in turn will be optimized to update the compression and restoration 
algorithms. In other words, the performance of the classification algorithms will dictate 
the real-time adaptation of the digital filters used in the compression schemes.  In this 
new concept, the filters in the compression algorithms, instead of acting independently, 
form a coupled system with the classification (or clustering) algorithms. This coupled 
system will be applied to the spectral dimension in this project since compression along 
the spectral axis is much less researched and understood than compression in the spatial 



domain. If it works as expected, we can also explore a combined spatio-spectral 
application.  
 
Using an iterative neural learning algorithm, called the Generalized Relevance Learning 
Vector Quantization, the classification and feature extraction are welded together with a 
2-way feedback loop, and the classification cannot be separated and substituted by a 
different classifier. In our proposed work, the classification algorithms can be replaced by 
others if so desired. 
 
The classifications are performed by a neural (ANN) classifier developed by Co-I EM. 
The reason for this is that hyperspectral imagery (100-500 input variables) containing as 
many classes as we include in this study have not been classified with better accuracy 
than this ANN classifier is capable of. Therefore, other classifiers are not as good for 
measuring the classification accuracy at different compression ratios as this tool. In real 
on-board compression scenarios the ability to use of a large number of (meaningful) 
classes is important for the representation of an application domain, therefore we need to 
simulate this aspect in our optimization cycle. 
 
 
Research Progress in Year-II 
  
1. (Rice) Unsupervised clustering: We did benchmark clustering on our uncompressed 

hyperspectral test image, and are performing the same on compressed-decompressed 
images. Currently the data mining and similar fields do not offer a suitable measure 
for the quality of clustering for a) high-dimensional data b) data with many clusters of 
widely varying shapes, sizes, densities, and overlaps. We developed (mostly under a 
parallel AISRP grant) a new cluster validity metric in order to be able to compare the 
quality of these clustering in a quantitative way.   
 

2. (VT) Developed the mathematical algorithms for optimizing compression algorithms: 
(a) adaptive filters, (b) predictor models, (c) adaptive quantizers, and (d) transform 
coders. This effort required constructing appropriate mathematical cost functions 
(from the insight gained in Year 1) and we derived several different optimizing 
approaches.  

 
3. (VT) Implemented Scheme 1 (Figure 5 in proposal). The compression scheme used is an 

Adaptive Differential Pulse Code Modulation (ADPCM) transmitter, which is 
composed of an adaptive predictive filter, adaptive quantizer, and an algorithm to 
update the filter coefficients in real time. The compressor is followed by a 
decompressor, which is an ADPCM receiver. The receiver consists of the same 
predictive filter and the same algorithm as the transmitter. The transmitter and 
receiver usually run in synchronization. The decompressed image has a certain Signal 
to Noise Ratio (SNR) depending upon the desired compression ratio and the 
performance of the adaptive filter and quantizer. A low SNR typically has an adverse 
effect on the classification algorithm. The performance metrics after classification are 
compared to a desired set of metrics. The error is used to compute a cost function that 
is minimized by an algorithm to update the coefficients of the predictive filter.  We 



have used some simple cost functions. These cost functions are minimized an 
adaptive filtering algorithm such as the LMS, EDS or RLS.  
 

4. (Rice) Supervised classification of compressed and decompressed images yielded 
excellent results: Classification accuracy of these images remains within 2% of the 
classification accuracy on original uncompressed data (Table 1). Some representative 
classes of spectral signatures are given in Appendix A. We continue the optimization 
approach with feedback from classification quality, and aim to achieve as good or 
better classification accuracy on compressed data as on the original data. Because we 
simulate ANNs on sequential computers of medium capacity (Sun Blade machines) 
the production of classifications, including an initial overhead of setting, verifying 
and testing the learning process itself, is fairly long, and also dependent on the 
demand on shared resources such as network and disk space.  

 
5. (USU) Provided project administration, accounting, and oversight. 

 
 
Table 1: Measuring the effect of compression on classification accuracy. Data: Hyperspectral image of Lunar Crater 
Volcanic Field, 196 spectral bands, 614 x 420 pixels. Classifications were done for 23 known surface cover types. 
Original uncompressed data are labeled with “LCVF”, a compressed-uncompressed data set with “D1c16”. 
 

Data Set Run C Run A Run E Run M Run B.0  Avg. Std. 
D1c16 84.9 86.3 85.1 82.4 84.6  84.66 1.46 

         
 Run 1 Run 2 Run 5.1 Run 5.2 Run 6    

LCVF 
benchmark 86.01 86.03 86.05 86.15 86.1  86.07 0.06 
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and Clustering of Self-Organizing Maps. Submitted to IEEE Trans. Neural 
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Research Plan for Year-III 
 
1.  (VT) Implement Scheme 2 (Figure 6 in proposal) in conjunction with the developed 

algorithms in Year II. Transfer the transform and quantized domain images to Rice. 
 
2. (Rice and VT) Perform classification of hyperspectral images in the transform and quantized 

domain obtained from 1. This will include experiments with a variety of transforms, 
compression ratios and quantizers. Send classification metrics and data back to USU for 
integration into the algorithms of Scheme 2 and modifying the algorithms, as necessary. The 
adaptive algorithms for the transform coder and the quantizer have to be finalized based on 
several iterations of information exchange between USU and Rice. 

 
3. (Rice and VT) Intermediate variants: As mentioned in the last paragraph of the description of 

Scheme 2, there are two extreme cases of the availability of training data for classification. 
One, where there is sufficient data is available, and the other when we have no labeled 
training data. There are many scenarios in between where some knowledge is available on 
classification.  In this task, we will implement and evaluate our algorithms for a 
representative number of these cases and accordingly modify our algorithms, as described in 
“Proposed Methods,” after Scheme 2. 

 
4. (VT, USU, Rice) Create demo of all our algorithms and project web site. All of our 

compression algorithms, codes, data analysis, and images will be available on our project 
web site for interested users. 

 
 
Most of our work during the last year appears in an impending publication, which is given 
in Appendix B.  This publication contains many of the interesting results and applications, 
which illustrate the performance of the developed algorithms with realistic data.   
 

http://www.ece.rice.edu/%7Eerzsebet/papers/Tasdemir-Merenyi-IJCNN-2007.pdf
http://www.ece.rice.edu/%7Eerzsebet/papers/Tasdemir-Merenyi-IJCNN-2007.pdf


 

 

APPENDIX A 
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APPENDIX B 
 

(Paper to appear in the IEEE Aerospace Conference, March 2008) 
 
 

This paper contains many of the results and applications performed during Year-2 
of this grant.
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Abstract—In image processing, classification and 
compression are very common operations. Compression and 
classification algorithms are conventionally independent of 
each other and performed sequentially. However, some 
class distinctions may be lost after a minimum distortion 
compression. In this paper, two new schemes are developed 
that combine the compression and classification operations 
in order to optimize some classification metrics. In other 
words, the compression systems are improved under 
classification constraints. In the first scheme, compression is 
achieved by using Adaptive Differential Pulse Code 
Modulation (ADPCM). Optimization of filter coefficients is 
done by using a simple genetic algorithm (GA). In the 
second scheme, compression is achieved by image 
transform and quantization. The parameters in transform 
and quantization are adapted to improve the compression 
system and reduce the classification errors. Computer 
simulations are performed on hyperspectral images. The 
results are promising and illustrate the performance of the 
algorithms under various classification constraints and 
compression schemes. 1 2 

minimum distortion compression. To reduce classification 
error, it is necessary to improve the compression system 
with feedback from the classifier.  

In this paper, we used clustering to map image data into 
baseline clusters, and this approach serves the role of 
classification for this study. The compression and the 
clustering systems are combined as in Figure 1. The basic 
idea of this system is to implement clustering on both the 
original uncompressed image and the image after 
compression and decompression operations. Clustering is 
done by using a simple unsupervised Self Organizing Map 
(SOM). The clustering error between pre- and post-
compression is fed back to improve the compression 
system. In this process, the quality of clustering will 
gradually increase, and the compression scheme will 
gradually improve in order to capture the important 
clustering features. 
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1. INTRODUCTION 

 2

2                                                          

Image classification is used to find special features of an 
image. It is usually performed on the original image, not the 
image after compression and decompression processing. 
Because of the large storage volume and spectral and spatial 
sample data redundancy [1], it is economical to compress 
hyperspectral images before classification. Obviously, there 
can be classification error between pre- and post-
compression classifications if the compression is lossy. 
Furthermore, some class distinctions may be lost after a 

Figure 1 – System combining compression and 
clustering 

With this system, two schemes are developed. In the first 
scheme, compression is achieved by using ADPCM, which 
has an adaptive predictor filter. The predictor coefficients 
are updated in real-time by optimizing a cost function based 
on clustering errors. A GA is used to choose the best filter 
coefficients in ADPCM according to the cost function. A 
corresponding algorithm, named GA-ADPCM algorithm, is 
developed. In the second scheme, compression is achieved 

 
1 1-4244-1488-1/08/$25.00 ©2008 IEEE. This work was supported in part 
by NASA Grant # NNG06GE95G. 
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by image transform and quantization. The parameters in 
transform and quantization are updated according to the 
clustering error. An algorithm, named Feedback-transform, 
is developed to realize this scheme.   

In our experiments, a SOM clustering is used, since SOMs 
have been successfully used to extract useful information 
from a number of space mission data sets, as well as to 
perform terrestrial studies [2]. For the ADPCM scheme, two 
ADPCM predictors are tested to minimize the mean-square 
error in the compression system. One is a Least Mean 
Square (LMS) predictor, and the other is a Euclidian 
Direction Search (EDS) predictor. LMS is a very popular 
adaptive filter algorithm. EDS, developed by Xu and Bose 
[3], [4], is a relatively new algorithm that aims to increase 
the convergence speed of the LMS. A GA is used to 
minimize the clustering error since GA provides a general 
approach for searching for global minima or maxima within 
a bounded, quantized search space [5]. For the transform 
scheme, a popular transform coding Discrete Cosine 
Transform (DCT) is tested. 

2. ADPCM SCHEME 

In this scheme, the compression block uses ADPCM 
algorithms. A GA is used to optimize the filter coefficients 
of ADPCM, which tries to achieve minimal clustering error. 
ADPCM algorithms try to minimize the mean-square or 
least square error. Therefore, the ADPCM scheme aims to 
achieve the minimum of a signal error metric and clustering 
error. The corresponding algorithm, GA-ADPCM, is 
developed. 

 
Figure 2 – ADPCM: (a) transmitter, (b) receiver 

Review of ADPCM System 

Figure 2(a) and (b) [4] show the transmitter and receiver of 
the ADPCM system, respectively. The signal to be 
transmitted or stored is . The output of the adaptive 
predictor is . The input to the adaptive predictor 
is

)(ns
)(ˆ ns

)(~ ns . The difference between the actual data and the 

predicted data is )(ˆ)()( nsnsne −= . The quantized error 
to be transmitted or stored is )(~ ne . In this paper, an 
adaptive quantizer named Jayant quantizer [4] is used. Two 
adaptive filter algorithms, LMS and EDS, are used. The cost 
function takes the mean square of the error and thereby is 
quadratic. 

Review Genetic Algorithm 

A genetic algorithm is used to find approximate solutions to 
optimization and search problems using techniques inspired 
by evolutionary biology [6]. The process is shown in Figure 
3 [7]. This process is repeated until the final goal is 
achieved. In our paper, the individuals are the coefficients 
in the ADPCM filter. The fitness criterion is a cost function 
based on the clustering error between pre- and post-
compression images.  

 

Figure 3 – Genetic algorithm 

GA-ADPCM Algorithm  

Since the genetic algorithm (GA) has the property of 
finding the optimal solution and the ADPCM algorithm has 
the property of minimizing an error metric, these two 
algorithms are combined into the GA-ADPCM algorithm 
that can not only minimize the mean-square error but also 
minimize the clustering error between pre- and post-
compression images. The flowchart is shown in Figure 4. 
First, an initial population of random individuals is 
generated, which are the different sets of coefficients used 
in the ADPCM predictor. Second, the ADPCM compression 
and decompression processing is implemented using these 
different sets of coefficients. Third, the SOM is applied to 
the decompressed images. The application of SOM to the 
original image should be done at the beginning. Fourth, the 
clustering error between the decompressed image and the 
original image is calculated. The clustering errors of all 
individuals are sorted. Next, 50% of the fittest individuals 
are chosen and applied genetic operations, e.g., crossover 
and mutation. Finally, the new coefficients population is 
created and the procedure is repeated again.  
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Figure 4 – Genetic ADPCM algorithm 

Cost Function 

The fitness function F to be minimized in GA is defined as: 
NCF e /=                                (1) 

where Ce is the number of pixels clustered incorrect, and N 
is the total pixels of the image. F becomes the percentage of 
incorrectly classified mapped pixels. Ce is obtained by the 
following steps: First, we do Cm = Co - Cg, where Co is the 
matrix containing the clustering result of the original image, 
which has all pixels assigned to different clusters. Cg is the 
matrix containing the clustering result of the image after 
ADPCM compression and decompression system. Cm is the 
difference between the two clustered images. Second, we 
assign all the nonzero points in the Cm matrix to be 1 and 
add them together to get the clustering error Ce.  

The cost function of this algorithm is no longer quadratic, 
but a more complex function. For instance, it may appear as 
in Figure 5. In each part, A, B, and C, respectively, the cost 
function is quadratic because of the properties of the 
ADPCM. The LMS and EDS predictors try to find one of 
the local minima of the cost function, which means trying to 
find one of the points A, B, or C. However, they may not 
guarantee the global minimum. Since GA is then used to 
find the approximate global minimum of the whole cost 
function, the algorithm GA-ADPCM tries to find point A in 
this example. 

 

Figure 5 – Cost function of GA-ADPCM 

3. TRANSFORM SCHEME 

In this scheme, the compression block uses a transform 
algorithm and a quantization. The transform concentrates 
the energy of the image to a small number of pixels [4]. 
These pixels can be quantized with more bits than other 
pixels. In this paper, the DCT is used because it is a popular 
transform algorithm. The DCT has several advantages, such 
as the coefficients are real, it has near-optimal property for 
energy compaction, and it is computationally efficient [4]. 

Hyperspectral images are high data volume images. For 
DCT processing, a hyperspectral image needs to be divided 
into blocks. Suppose a full length DCT is used. As the 
property of DCT, the energy is always located in the low 
frequency pixels. It needs to use larger bits to quantize these 
significant pixels. Usually, the greater the block size, the 
less total DCT processing time is needed. However, it needs 
more bits for the significant pixels to achieve a certain 
clustering error, which increases the total storage. 
Obviously, for a fixed number of quantization bits, using 
the shorter length of block size will get better results, but a 
longer processing time is needed. Depending on the 
different limitations on processing speed or storage 
capacity, one can either adjust the block size or the number 
of bits. Furthermore, one can adjust both of the parameters, 
and find a tradeoff between the length of block size and the 
number of bits. For two different limitations, two methods 
are provided. Method I, given a fixed number of bits, find 
the largest block size. Method II, given a fixed block size, 
find out the smallest number of bits needed. Of course, the 
prerequisite of these two methods is to keep a certain 
clustering correction rate. The Feedback-transform 
algorithm is developed to realize these two methods. One 
can also use this algorithm to find a balance between the 
length of block size and the number of bits. 

Feedback-Transform Algorithm 

The diagram of the feedback transform algorithm is shown 
in Figure 6. At the beginning, initial parameters are set up. 
One of two quantization methods, Method I and Method II, 
can be chosen in this scheme.  For Method I, a large block 
size is used. For Method II, a small number of bits is used 
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for quantization. After applying transform and clustering, 
the result is compared with the clustering result of the 
original image. The fitness function is still calculated by 
using equation (1). If the clustering error does not meet the 
requirement, then the parameters are adjusted. For Method 
I, it means to cut the block size into half. For Method II, it 
means to increase the number of bits. Then these steps are 
repeated until the clustering error threshold is achieved.  

 

Figure 6 – Feedback-transform algorithm 

4. SIMULATIONS 

An example of a hyperspectral cube is shown in Figure 7. 
This is the Lunar Crater Volcanic Field (LCVF) in Nevada, 
one of NASA’s standard remote sensing imaging sites. In 
this experiment, two hyperspectral cubes were used. One is 
the LCVF, the other is of the Jasper Ridge (JR) site. Both 
were acquired by the AVIRIS hyperspectral sensor [8]. 

GA-ADPCM Performance 

One image band of the Jasper Ridge was used. The 
subimage with 512x512 pixels was used to be the original 
image in the simulation and shown in Figure 8. To save the 
storage of the memory on the computer and increase the 
speed of performance, the image was divided into blocks. 
Different block sizes were tried, including 16x16, 32x32, 
and 64x64 pixels. In SOM, different numbers of clusters 
were also tried, including 3 clusters, 4 clusters, 6 clusters, 

and 8 clusters. In all these trials, the performance was 
similar in that the clustering errors were smaller in GA-
ADPCM than in ADPCM.  

 

Figure 7 – The Lunar Crater Volcanic Field 

 

Figure 8 – One image band of Jasper Ridge 

First, a two-dimensional LMS (2D-LMS) was used in the 
ADPCM system. Figure 9 is one 64x64 block of the original 
image, and Figure 10 is the clustering result of the original 
image. In SOM, 4 clusters were used. Figure 11 is the 
clustering result using LMS only, and Figure 12 is the 
clustering result using GA-LMS. We can see that all of 
these clustering results are correlated, but small differences 
are apparent between the images. Our purpose is to reduce 
the differences, thus reducing clustering error. The total 
clustering error using GA-LMS (0.066406) is smaller than 
that using LMS (0.078125).  

In GA, the individuals in each generation have different 
fitness scores. The fittest individual who has the smallest 
clustering error is saved. Figure 13 shows the fitness scores 
of different generations. In each generation, there is a 
lowest fitness score, a highest score, and an average score. 
The red circles represent the lowest fitness scores, the blue 
line represents the highest scores, and the green marks 
represent the average scores. We can see that the lowest 
fitness scores converge to a certain value. The coefficients 
corresponding to the individual for this value is optimal 
because they can minimize both the clustering error and the 
mean-square error. 
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Figure 9 – One block of a image band of Jasper Ridge 
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Figure 10 – Clustered image from original image 
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Figure 11 – Clustered image from LMS image 
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Figure 12 – Clustered image from GA-LMS image 
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Figure 13 – Fitness score for GA-LMS 
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Figure 14 – Clustered image from EDS image 
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Figure 15 – Clustered image from GA-EDS image 
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Figure 16 – Fitness score for GA-EDS 

A 2D-EDS predictor was also tested in the ADPCM system. 

Table 1 lists the clustering error comparison between LMS 

 

The same block of the original image was used. Figure 14 is 
the clustering result using only EDS. Figure 15 is the 
clustering result using GA-EDS. The total clustering error 
using GA-EDS is 0.083008, and the error using EDS is 
0.091064. When EDS is used as the predictor, the 
performance is still improved by using GA-EDS. Figure 16 
shows the fitness scores of different generations in GA-
EDS.  

and GA-LMS and between EDS and GA-EDS. The block 
size is 64x64 pixels and the number of class is 4. The table 
gives the errors of blocks (1, 1) through (1, 8). As seen from 
the table, the GA-ADPCM performs better than the 
ADPCM in minimizing clustering error.  

Table 1.  Clustering Error Comparison between ADPCM 
and GA-ADPCM 

Block 
Index LMS GA-LMS EDS GA-EDS 

(1,1) 0.0424 0.03442 0.0527 0.04541 
(1,2) 0.060303 0.049561 0.085938 0.070557 
(1,3) 0.05127 0.040771 0.070801 0.061279 
(1,4) 0.027588 0.023193 0.039551 0.032227 
(1,5) 0.04248 0.027588 0.056641 0.04834 
(1,6) 0.039063 0.037354 0.05127 0.050781 
(1,7) 0.057129 0.049072 0.065186 0.05835 
(1,8) 0.069336 0.065674 0.092773 0.080566 
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Figure 17 – Clustering error comparison between LMS 
and GA-LMS: block size=16, clusters=3 
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Figure 18 – Clustering error comparison between LMS 
and GA-LMS: block size=64, clusters=4 
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Figure 19 – Clustering error comparison between LMS 
and GA-LMS: block size=64, clusters=8 
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Figure 20 – Clustering error comparison between EDS 
and GA-EDS: block size=16, clusters=4 

Different block sizes and cluster sizes were tested. Figures 
17–20 illustrate the clustering-error comparison between the 
ADPCM and the GA-ADPCM. Red lines represent the error 
using the ADPCM, while blue lines are the error using the 
GA-ADPCM. In these figures, all the red lines are higher 
than the blue ones, meaning that the clustering errors are 
larger in ADPCM than in GA-ADPCM. Figure 18 and 19 
also illustrate that the clustering errors are sensitive to the 
number of clusters. For the same block size, the number of 
clusters increases, the cluster error increases. 

Feedback-Transform Performance 

For this preliminary work, a subcube was taken from each 
of the LCVF and the JR images individually, which was 
used as the original image. A subcube was used to increase 
the speed of performance. Another important reason is that 
Matlab cannot handle the whole hyperspectral image. Six 
bands, bands 64 – 69, were selected arbitrarily from all 
AVIRIS bands, for this preliminary study. For each image 
band, the size is 128 x 128 pixels. Thus the subcube has size 

128 x 128 pixels x 6 bands. Figure 21 shows one image 
band of the LCVF image subcube.  

During the procedure, clustering was still using a SOM and 
the whole subcube was clustered into 6 clusters. Transform 
was performed by using 1-D DCT along the spectral 
domain. The image cube was reshaped into one-dimensional 
vector along spectral domain. The vector was cut into 
blocks and DCT and quantization were applied to it. After 
applying dequantization and inverse DCT, the data was 
reshaped back to an image cube, and then SOM clustering 
was applied to it. 

According to the property of DCT, we set the first one-sixth 
of block size data to apply large-bit uniformly distributed 
quantization because these are the most significant data. For 
Method I, we use 8 bits. For Method II, we initially set it to 
5 bits. For the rest of the data, a two-bit quantization was 
used. The clustering error threshold was set to be 3%. If the 
clustering error was larger than the threshold, we cut the 
block size into half for Method I or increased by 1 bit in the 
quantization of significant data for Method II. Next, the 
steps introduced in the Feed-back transform algorithm were 
applied again. Otherwise, we stopped.  

Figure 22 shows the clustered image of the original LCVF. 
Table 2 shows the clustering errors using different block 
sizes for a settled number of bits, which is the result of 
applying Method I. To achieve an error smaller than 3%, the 
block size needs to be 24 or less. The DCT processing time 
in Matlab is also listed in Table 2. For larger block size, the 
less DCT processing time is needed. For smaller block size, 
the more processing time is needed. Figure 23 shows the 
clustered image after transform when using block size 24. 
Method I was also tested on the JR image. Figure 24 shows 
one image band of the JR image subcube. Figure 25 shows 
the clustered image of the original JR. Table 3 shows the 
clustering errors using different block sizes. To achieve the 
error threshold, the block size needs to be 48 or less. Figure 
26 shows the clustered image after transform when using 
block size 48. Apparently, different images can get different 
suitable block sizes.  

Method II was also applied to the JR cube. The DCT block 
size was fixed to be 48. Table 4 lists the clustering errors 
using different numbers of bits. It needs 8 bits to achieve 
the error threshold. This method requires fewer bits as 
compared to the 12 bits used to represent a pixel of AVIRIS 
data. The compression ratio for the whole subcube is also 
listed in Table 4 to represent the storage saving 
performance. For a higher compression ratio, the less 
storage is needed. For the whole uncompressed JR subcube, 
1179648 bits are needed for the storage. After applying 
Method II and using 8 bits for the most significant data, 
294912 bits are needed for the storage. The compression 
ratio is thereby 4:1. 
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Figure 21 – One image band of the LCVF subcube 
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Figure 22 – Clustered image of original image – 6 
clusters 
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Figure 23 – Clustered image after transform – 6 clusters 
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Figure 24 – One image band of the JR subcube 
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Figure 25 – Clustered image of original image – 6 
clusters 
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Figure 26 – Clustered image after transform – 6 clusters 
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Figure 27 illustrates the mean spectral signatures of the 
clusters for both original image and the image after 
applying transform compression and decompression. This 
result is based on the JR image and applying Method I for 
transform compression. The “before” and “after” spectral 
signatures are very similar, which shows that the 
compression preserved the cluster distinctions. 
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Figure 27 – Mean spectral signatures of the SOM 
clusters identified in the Jasper Ridge image. Left: from 
the original image. Right: from the image after applying 

DCT compression and decompression 

Table 2.  Clustering Errors using Different Block Sizes in 
LCVF 

Iteration 1 2 3 4 5 6 

Block size 768 384 192 96 48 24 
Cluster 
error 0.149 0.109 0.078 0.050 0.036 0.029 

DCT 
processing 
time (s) 

0.427 0.435 0.527 0.742 1.097 1.890 

 

Table 3.  Clustering Errors using Different Block Sizes in 
JR 

Iteration 1 2 3 4 5 

Block size 768 384 192 96 48 
Cluster 
error 0.0980 0.0728 0.0469 0.0317 0.0218 

DCT 
processing 
time (s) 

0.4246 0.4408 0.5379 0.7165 1.1376 

 

Table 4.  Clustering Errors using Different Number of Bits 
in JR 

Iteration 1 2 3 4 

Bit 5 6 7 8 

Cluster error 0.1292 0.0657 0.0367 0.0223 

Compression ratio 4.8:1 4.5:1 4.2:1 4:1 
 

5. CONCLUSION 

A new structure combining image compression and image 
clustering schemes was investigated in this paper. Two 
corresponding schemes were modeled. One was the 
ADPCM scheme, and the other the transform scheme. The 
corresponding algorithms, GA-ADPCM and Feedback-
transform were simulated, respectively. For the ADPCM 
scheme, the filter coefficients in ADPCM were optimized 
by using the genetic algorithm and the LMS and EDS 
predictors were used. In the genetic algorithm, the fitness 
function used the clustering error between pre- and post-
compression images so that the filter coefficients were also 
changed to optimize the clustering error. The simulation 
results demonstrate that the algorithm has good 
performance. However, the cost is the computation 
complexity. For the transform scheme, two methods were 
tested. With fixed number of bits in quantization, the 
suitable block size for DCT was chosen. With fixed block 
size, the suitable number of bits was chosen. For different 
hyperspectral data, the suitable block size and number of 
bits were different. This scheme aims to optimize 
computation time and storage. In the future, more 
sophisticated classification methods, such as SOM-based 
hybrid ANN [9], will be applied. For the ADPCM scheme, 
a multiplier-free adaptive filter [10] combined with the 
genetic algorithm will also be investigated. For the 
transform scheme, different types of image transforms will 
be tested.  
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